Abstract

Dynamic breaking and reforming of sacrificial bonds in sliding interfaces of biological and bioinspired heterostructures could greatly enhance fracture resistance by providing a self-healing energy dissipation process. Nevertheless, how interfacial self-healing behaviors and nonuniform stress transfer act in concert over multiple length scales and boost fracture toughness remains elusive. Here, a multiscale fracture mechanics model for bioinspired staggered heterostructures was developed by integrating interfacial self-healing behaviors, RVE's deformation responses, and macroscopic crack bridging. We found two critical brick sizes between which the fracture toughness enhanced by interfacial self-healing processes surpasses that by ideal elastic-plastic interface. The simultaneous increased crack-bridging stress and opening displacement induced by interfacial nonuniform deformation modes, including elastic, strengthening and sliding stages between the two critical sizes, are identified to enhance the fracture resistance. Moreover, our model provides parametric guidelines for optimizing bioinspired fracture-resistant structural materials with self-healing interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.