Abstract

Bud-branched nanotubes, fabricated by growing metal particles on the surface of multi-wall carbon nanotubes (MWCNTs), were used to prepare poly(vinylidene fluoride) (PVDF) based nanocomposites. The results of differential scanning calorimetry (DSC) showed that the introduction of the MWCNTs and bud-branched nanotubes both increased the crystallization temperature, while no significant variation of T m (melting temperature), Δ H c (melting enthalpy) and Δ H m (crystallization enthalpy) occurred. The results of wide angle X-ray diffraction (WAXD) tests showed that α-phase was the dominated phase for both pure PVDF and its nanocomposites, indicating the addition of the MWCNTs and bud-branched nanotubes did not alter the crystal structures. Dynamic mechanical analysis (DMA) tests showed that bud-branched nanotubes were much more efficient in increasing storage modulus than the smooth MWCNTs. In addition, no significant variation of the T g (glass transition temperature) was observed with the addition of MWCNTs and bud-branched nanotubes. Tensile tests showed that the introduction of MWCNTs and bud-branched nanotubes increased the modulus. However, a dramatic decrease in the fracture toughness was observed for PVDF/MWCNTs nanocomposites. For PVDF/bud-branched nanotubes nanocomposites, a significant improvement in the fracture toughness was observed compared with PVDF/MWCNTs nanocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call