Abstract

Unidirectional (UD) pre-pregs containing self-healing materials based on Diels–Alder reaction bis-maleimide (BMI) polymers were successfully incorporated on the mid-plane of UD carbon fibre reinforced polymers. The fracture toughness of these composites and the introduced healing capability were measured under mode I loading. The interlaminar fracture toughness was enhanced considerably, since the maximum load (Pmax) of the modified composite increased approximately 1.5 times and the mode I fracture energy (GIC) displayed a significant increase of almost 3.5 times when compared to the reference composites. Furthermore the modified composites displayed a healing efficiency (HE) value of about 30% for Pmax and 20% for GIC after the first healing, appearing to be an almost stable behaviour after the third healing cycle. The HE displayed a decrease of 20% and 15% for Pmax and GIC values, respectively, after the fifth healing cycle. During the tests, the monitored acoustic emission (AE) activity of the samples showed that there is no significant difference due to the presence of BMI polymer in terms of AE hits. Moreover, optical microscopy not only showed that the epoxy matrix at the interface is partly infiltrated by the BMI polymer, but it also revealed the presence of pulled out fibres at the fractured surface, indicating ductile behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.