Abstract

Biocompatibility hydrogel conductors are considered as sustainable bio-electronic materials for the application of wearable sensors and implantable devices. However, they mostly face the limitations of mismatched mechanical properties with skin tissue and the difficulty of recycling. In this regard, here, a biocompatible, tough, reusable sensor based on physical crosslinked polyvinyl alcohol (PVA) ionic hydrogel modified with ι-carrageenan (ι-CG) helical network was reported. Through simulating the ion transport and network structure of biological systems, the ionic hydrogels with skin-like mechanical features exhibit large tensile strain of 640 %, robust fracture strength of 800 kPa, soft modulus and high fatigue resistance. Meanwhile, the ionic hydrogel-based sensors possess a high response to strain/pressure over a wide range and could be utilized for multimodal sensing of human activity signals. Benefit from biosafety and temperature reversibility of ι-CG and PVA endow hydrogels with not only biocompatibility, but also meaningfully recyclability. The as-prepared hydrogels could be freely reconstructed into new flexible electronics and safely integrated with the human skin. It could be anticipated that the physically cross-linked ionic hydrogel conductor could expand the options for next-generation bio-based sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call