Abstract

TOUGH+CO 2 is a new simulator for modeling of CO 2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat and up to 3 mass components, which are partitioned into three possible phases. In the code, the thermodynamics and thermophysical properties of H 2O–NaCl–CO 2 mixtures are determined based on system status and subdivided into six different phase combinations. By solving coupled mass and heat balance equations, TOUGH+CO 2 can model non-isothermal or isothermal CO 2 injection, phase behavior and flow of fluids and heat under typical conditions of temperature, pressure and salinity in CO 2 geologic storage projects. The code takes into account effects of salt precipitation on porosity and permeability changes, and the wettability phenomena. The new simulator inherits all capabilities of TOUGH2 in handling fractured media and using unstructured meshes for complex simulation domains. The code adds additional relative permeability and capillary pressure functions. The FORTRAN 95 OOP architecture and other new language features have been extensively used to enhance memory use and computing efficiency. In addition, a domain decomposition approach has been implemented for parallel simulation. All these features lead to increased computational efficiency, and allow applicability of the code to multi-core/processor parallel computing platforms with excellent scalability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call