Abstract

Polymer blending is an efficient way to obtain extraordinary polymeric materials. However, once permanently cross-linked thermosets are involved in blending, there are challenges in designing and optimizing the structures and interfacial compatibility of blends. Vitrimer with dynamic covalent polymer networks provides an innovative opportunity for blending thermoplastics and thermosets. Herein, a reactive blending strategy is proposed to develop thermoplastic-thermoset blend with enhanced compatibility on the basis of dynamic covalent chemistry. Specifically, polybutylene terephthalate (PBT) and polymerized epoxy vitrimer can be directly melt blended to obtain tough and thermostable blends with desirable microstructures and interfacial interaction. Bond exchange facilitates the grafting of PBT and epoxy vitrimer chains, thus enhancing the interfacial compatibility and thermal stability of blends. The obtained blend balances the strength and stretchability of PBT and epoxy vitrimer, resulting in enhanced toughness. This work offers a new way for designing and fabricating new polymeric materials by blending thermoplastics and thermosets. It also suggests a facile direction towards upcycling thermoplastics and thermosets. This article is protected by copyright. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call