Abstract

Soft strain gauges provide a flexible and versatile alternative to traditional rigid and inextensible gauges, overcoming issues such as impedance mismatch, the limited sensing range, and fatigue/fracture. Although several materials and structural designs are used to fabricate soft strain gauges, achieving multi-functionality for applications remains a significant challenge. Herein, a mechanically interlocked gel-elastomer hybrid material is exploited for soft strain gauge. Such a material design provides exceptional fracture energy of 59.6kJ m-2 and a fatigue threshold of 3300 J m-2 , along with impressive strength and stretchability. The hybrid material electrode possesses excellent sensing performances under both static and dynamic loading conditions. It boasts a tiny detection limit of 0.05% strain, ultrafast time resolution of 0.495ms, and high linearity. This hybrid material electrode can accurately detect full-range human-related frequency vibrations ranging from 0.5 to 1000Hz, enabling the measurement of physiological parameters. Additionally, the patterned soft strain gauge, created through lithography, demonstrates superior signal-noise rate and electromechanical robustness against deformation. By integrating a multiple-channel device, an intelligent motion detection system is developed, which can classify six typical human body movements with the assistance of machine learning. This innovation is expected to drive advancements in wearable device technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.