Abstract

Hydrogels are often used to fabricate strain sensors; however, they also suffer from freezing at low temperatures and become dry during long-time storage. Encapsulation of hydrogels with elastomers is one of the methods to solve these problems although the adhesion between hydrogels and elastomers is usually low. In this work, using bovine serum protein (BSA) as the natural globulin model and glycerol/H2O as the mixture solvent, BSA/polyacrylamide organohydrogels (BSA/PAAm OHGs) were prepared by a facile photopolymerization approach. At the optimal condition, BSA/PAAm OHG demonstrated not only high toughness but also tough adhesion properties, which could strongly adhere to various substrates, such as glass, metals, rigid polymeric materials (even poly(tetrafluoroethylene), i.e., PTFE), and soft elastomers. Moreover, BSA/PAAm OHG was flexible and showed tough adhesion at -20 °C. The toughening mechanism and the adhesive mechanism were proposed. On being encapsulated by poly(dimethylsiloxane) (PDMS), it illustrated good antidrying performance. After introducing a conductive filler, the encapsulated BSA/PAAm OHG could be used as a strain sensor to detect human motions. This work provides a better understanding of the adhesive mechanism of natural protein-based organohydrogels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call