Abstract

The touch-down and take-off characteristics of a typical pico-type magnetic recording slider is investigated as a function of pressure level and groove dimensions of discrete track recording (DTR) media. Keeping the ambient pressure constant, we found that the touch-down velocity was higher for DTR disks than for “smooth” disks without discrete tracks. Likewise, the “ambient” touch-down pressure at constant velocity was found to be higher for DTR disks than for smooth media. The hysteresis between touch-down and take-off velocity and touch-down and take-off ambient pressure was found to be larger for DTR media than for smooth media. Start/stop tests on discrete track media were performed to investigate the effect of grooves of discrete track media on the tribology of the head/disk interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.