Abstract

We give a combinatorial proof of a Touchard-Riordan-like formula discovered by the first author. As a consequence we find a connection between his formula and Jacobi's triple product identity. We then give a combinatorial analog of Jacobi's triple product identity by showing that a finite sum can be interpreted as a generating function of weighted Schröder paths, so that the triple product identity is recovered by taking the limit. This can be stated in terms of some continued fractions called T-fractions, whose important property is the fact that they satisfy some functional equation. We show that this result permits to explain and generalize some Touchard-Riordan-like formulas appearing in enumerative problems. Nous donnons une preuve combinatoire d'une formule à la Touchard-Riordan due au premier auteur. En conséquence, nous faisons appara\^ıtre un lien entre cette formule et l'identité du produit triple de Jacobi. Nous donnons un analogue combinatoire à l'identité du produit triple en montrant qu'une somme finie peut être interprétée comme fonction génératrice de chemins de Schröder pondérés, de sorte que l'identité du produit triple s'obtient en passant à la limite. Ceci peut être énoncé en termes de fractions continues appelées T-fractions, dont la propriété importante est le fait qu'elle satisfont certaines équations fonctionnelles. Nous montrons que ce résultat permet d'expliquer et généraliser certaines formules à la Touchard-Riordan apparaissant dans des problèmes d'énumération.

Highlights

  • 1.1 Touchard-Riordan formulasThe original result of Touchard [Tou52], later given more explicitly by Riordan [Rio75], answers the combinatorial problem of counting chord diagrams according to the number of crossings

  • It has been stated in terms of a continued fraction by Read [Rea79], so that the Touchard-Riordan formula is:

  • Using continued fractions and basic hypergeometric series, the first author [JV10] proved the following formula in a slightly different form related with enumeration of alternating permutations:

Read more

Summary

Touchard-Riordan formulas

The original result of Touchard [Tou52], later given more explicitly by Riordan [Rio75], answers the combinatorial problem of counting chord diagrams according to the number of crossings. It has been stated in terms of a continued fraction by Read [Rea79], so that the Touchard-Riordan formula is:. Using continued fractions and basic hypergeometric series, the first author [JV10] proved the following formula in a slightly different form related with enumeration of alternating permutations:. In the first part of this paper, we prove (2) combinatorially. To do this we introduce a combinatorial model whose weight sum is equal to k i=−k (−q)−i2.

Jacobi’s triple product identity
T -fractions
Penaud’s decomposition
T -fractions and S-fractions
Combinatorics on weighted Dyck paths
Generalized q-secant numbers
Main result
New Touchard-Riordan-like formulas
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call