Abstract

Abstract This paper presents a 96 × 96 fingerprint sensor implemented with 0.25 μm standard CMOS technology. The implemented fingerprint sensor is based on a pseudo-direct signaling scheme that does not require an electrode for signal transmission. And the pseudo-direct signaling was combined with sensor cell isolation scheme which controls the unwanted influx of the electric fields effectively. And a pipelined scan technique was applied for fast fingerprint image capture while maintaining SNR performance. It was fabricated with 0.25 μm standard CMOS technology and was molded with 80 μm-thick epoxy after fabrication. The fingerprint sensor was tested with ARM board combined with PC applications. The obtained fingerprint images from the fingerprint sensor were enhanced to reduce the noise of the obtained images by using filtering technique, such as Wiener, 2D Gaussian, and 2D FIR filtering. From the test results, it was concluded that the implemented fingerprint sensor with the isolation scheme worked well without bezel electrode and can be used in biometric authentication systems effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.