Abstract

Ceramic restorations are often adhesively luted onto the tooth prep. The so-called touch-cure concept was developed to yield optimum polymerization of composite cement at the restoration-cement-tooth interface for immediate bond stabilization. Although this touch cure is theorized to initiate polymerization at the interface when the accelerator in the primer makes contact with the cement, this process has not yet been proven. This study aimed to elucidate the mechanism of touch cure by measuring the degree of conversion (DC) of composite cement applied with or without an accelerator-containing tooth primer (TP) versus an accelerator-free primer using real-time Fourier-transform infrared spectroscopy (RT-FTIR) and attenuated total reflection (ATR)–FTIR. Interfacial bond strength was measured in shear mode, the accelerator composition confirmed by X-ray fluorescence analysis (XRF), and the interfacial interaction of TP and composite cement with dentin investigated by X-ray diffraction (XRD), focused-ion-beam scanning electron microscopy (FIB-SEM) with 3-dimensional interface reconstruction, and transmission electron microscopy (TEM). RT/ATR-FTIR revealed the significantly highest DC when the composite cement was applied with the accelerator-containing primer. XRF disclosed a vanadium compound as a novel chemical accelerator within TP, instead of a classic chemical curing initiator system, to set off touch cure as soon the cement contacts the previously applied primer. Although the TP contains the acidic functional monomer 10-MDP for adhesion to tooth tissue, touch cure using the accelerator-containing TP combined the fastest/highest DC with the highest bond strength. FIB-SEM and TEM confirmed the tight interfacial interaction at dentin with submicron hybridization along with stable 10-MDP also Ca-salt nanolayering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.