Abstract
Under some dimension restrictions, we prove that totally umbilical hypersurfaces of Spin[Formula: see text] manifolds carrying a parallel, real or imaginary Killing spinor are of constant mean curvature. This extends to the Spin[Formula: see text] case the result of Kowalski stating that, every totally umbilical hypersurface of an Einstein manifold of dimension greater or equal to [Formula: see text] is of constant mean curvature. As an application, we prove that there are no extrinsic hypersheres in complete Riemannian [Formula: see text] manifolds of non-constant sectional curvature carrying a parallel, Killing or imaginary Killing spinor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.