Abstract
AbstractEnochs introduced and studied totally integrally closed rings in the class of commutative rings. This article studies the same question for Azumaya algebras, a study made possible by Atterton's notion of integral extensions for non-commutative rings.The main results are that Azumaya algebras are totally integrally closed precisely when their centres are, and that an Azumaya algebra over a commutative semiprime ring has a tight integral extension that is totally integrally closed. Atterton's integrality differs from that often studied but is very natural in the context of Azumaya algebras. Examples show that the results do not carry over to free normalizing or excellent extensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.