Abstract

A totally implantable ventricular assist system (VAS), including a drive system and a percutaneous electric energy transmission system, was developed and evaluated in acute animal experiments using adult goats. This newly designed VAS mainly consists of a vibrating tube, coils, magnets, and a jelly-fish valve as the outlet valve. For energy transmission, a new implantable transmitter with a plain weave structure was proposed as a noncontacting transform by using the spinal amorphous magnetic fibers. The fluid mechanical and hemodynamic properties and the efficiency of the energy transmission system were evaluated in acute animal experiments using healthy adult goats. This vibrating electromagnetic artificial heart (AH) could generate more than 10 L/min as output volume, with 10 Hz vibration using 20 volts as supplied voltage. The total efficiency of the percutaneous energy transmission system was 76%, and temperature increases were within the acceptable range, suggesting the usefulness of our newly developed implantable VAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.