Abstract

A team forms to address the challenge of low cost, low maintenance gas compression that can be quickly ramped up to meet peak demands. The Natural Gas Industry recognizes the importance of efficient, flexible compression equipment for the transmission of gas. In the early 1900s the Gas Industry met its compression objectives with many small reciprocating compressor units. As competition increased, Gas Companies began employing more cost effective larger units 3.7 MW (5,000 bhp) and eventually gas turbines 11+ MW (15,000+ bhp) became the prime mover of choice. While gas fired engine driven compressors are convenient for gas companies; they are becoming increasingly difficult to install. Environmental restrictions have tightened making permitting difficult. The larger gas turbine units seemed a solution because they were the low capital cost prime mover and clean burning. However, gas turbines have not yet achieved the high degree of flexibility and fuel efficiency gas transporters hoped. Flexibility has become an increasingly important issue because of the new “Peaking Power Plants” that are coming online. Gas companies are trying to solve the problem of low cost, low maintenance compression that can be quickly ramped up to meet peak demands. The idea of using electric motors to drive compressors to minimize the environmental, regulatory, and maintenance issues is not new. The idea of installing an electrically powered, highly flexible, efficient, low maintenance compressor unit directly into the pipeline feeding the load, possibly underground where it won’t be seen or heard, is a new and viable way for the gas and electric industries to do business together. This paper examines the application of totally enclosed, variable speed electric motor driven gas compressors to applications requiring completely automated, low maintenance, quick response gas pressure boosters. In this paper we will describe how a natural gas transporter, compressor manufacturer, motor manufacturer, and power company have teamed up to design the world’s first gas compressor that can be installed directly in the pipeline. We will discuss methodologies for installing the proposed compressor, the environmental benefits — no emissions, a small footprint, minimal noise — and the benefit of being able to install compression exactly where it is needed to meet the peaking requirements of today’s new loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.