Abstract
This study examines the trajectory (slope) of coastal foredune toe retreat in response to nine storm events that impacted the Outer Banks, North Carolina, USA. High resolution, three-dimensional, repeat mobile terrestrial lidar observations over a four kilometer stretch of coast were used to assess spatiotemporal beach and dune evolution at the storm timescale. Consistent with existing field observations from other sandy coastlines, an upward toe retreat was observed for most instances of dune retreat in the Outer Banks. However, these new topographic data indicate that the retreat can proceed steeply downward when the maximum total water level (TWL) defined by the 2% runup exceedance level is not high enough, for long enough, to erode the dune face. Non-linear relationships were found between the dune toe retreat trajectory as well as both the magnitude and duration of TWL above the dune toe, where instances of upward- and downward-directed retreat are best differentiated using the 7% runup exceedance level, rather than the commonly used 2% level. This physically justified non-linear relationship is shown to be consistent with observations from other studies, and could be a more effective parameterization for the retreat trajectory than those currently implemented in wave-impact dune erosion models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.