Abstract
In this paper, we continue the study of the domination game in graphs introduced by Brešar et al. (SIAM J Discret Math 24:979–991, 2010). We study the total version of the domination game and show that these two versions differ significantly. We present a key lemma, known as the Total Continuation Principle, to compare the Dominator-start total domination game and the Staller-start total domination game. Relationships between the game total domination number and the total domination number, as well as between the game total domination number and the domination number, are established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.