Abstract

AbstractA bidimensional numerical model has been used in order to simulate the contaminant transport in the coastal groundwater area (Atlantic margin of the Rharb basin, Morocco). This groundwater is materialized by means of the salt contamination derived from several factors: evapotranspiration, lithological series formations, marine intrusion, and processes of interaction between water and rocks. In order to reduce the numerical diffusion and limit the numerical dispersion, we use the Superbee flux limiter as a total variation diminishing scheme to discretize the convective operator. This kind of discretization was applied to the coastal groundwater of the Rharb basin (Morocco). The results show that the Superbee flux limiter is efficient at drawing the path of the contaminant front with high accuracy. Consequently, this scheme could constitute an approach in water management and allows one to prevent the risks of pollution and to manage the groundwater resource from a durable development perspective. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.