Abstract
Multi-Camera arrays are increasingly employed in both consumer and industrial applications, and various passive techniques are documented to estimate depth from such camera arrays. Current depth estimation methods provide useful estimations of depth in an imaged scene but are often impractical due to significant computational requirements. This paper presents a novel framework that generates a high-quality continuous depth map from multi-camera array/light field cameras. The proposed framework utilizes analysis of the local Epipolar Plane Image (EPI) to initiate the depth estimation process. The estimated depth map is then processed using Total Variation (TV) minimization based on the Fenchel-Rockafellar duality. Evaluation of this method based on a well-known benchmark indicates that the proposed framework performs well in terms of accuracy when compared to the top-ranked depth estimation methods and a baseline algorithm. The test dataset includes both photorealistic and non-photorealistic scenes. Notably, the computational requirements required to achieve an equivalent accuracy are significantly reduced when compared to the top algorithms. As a consequence, the proposed framework is suitable for deployment in consumer and industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.