Abstract

Gravity edge detector based adaptive total variation denoising model Gra-ATV is addressed in this paper to remove noises within captured ampoule injection images. In the proposed algorithm, each image pixel is considered as a celestial body with a mass represented by its grayscale intensity. Vector sum of gravitational forces related to this pixel is calculated then. If its value is larger than the global threshold, an edge point can be achieved. To prevent the occurrence of the 'staircasing effect' and save the fine features, the regularisation term and the fidelity term of Gra-ATV model change adaptively according to whether the current operating pixel is at an edge or in flat areas. Tests and comparisons between the proposed algorithm and L

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.