Abstract

Comprehensive SummaryWe report an efficient and convergent strategy for the total synthesis of UCS1025A and its diastereomer tetra‐epi‐UCS1025A. UCS1025A is a representative member of the naturally occurring pyrrolizidinone polyketides, from which members with potent antibacterial, antifungal, and anticancer activities have been identified. Our approach features a tandem carbonylative Stille cross coupling and Diels‐Alder reaction to forge a key C—C bond and build the trans‐decalin system. This tandem process utilizes carbon monoxide as a one‐carbon linchpin to stitch a vinyl triflate and a vinylstannane together and form the desired enone moiety for the subsequent intramolecular Diels‐Alder cyclization. Our synthesis also provides a versatile approach for the synthesis of other related pyrrolizidinone‐containing polyketides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call