Abstract
The unusual monoterpenoid indole alkaloid meloscine was synthesized starting from a protected aminoethylquinolone in 15 steps and an overall yield of 9%, employing a [2+2]-photocycloaddition as the stereochemistry defining key step. After the initial plan of a Wagner-Meerwein type rearrangement of a [4.2.0]- into a [3.3.0]-bicyclic substructure could not be realized, the required ring enlargement of a cyclobutane was eventually achieved by a retro-benzilic acid rearrangement. Generation of the central pyrrolidine ring was possible by a three-step reductive amination domino sequence. The final ring was built up by a ring-closing metathesis after the last quaternary stereocenter had been constructed by a Johnson-Claisen rearrangement. The synthesis was concluded by a selenylation-elimination sequence to build up the exocyclic vinyl group of meloscine. Using our methodology for enantioselective [2+2]-photocycloaddition mediated by a chiral complexation agent, the experimentally very simple synthesis could be performed in an enantioselective fashion (7 % overall yield). The enantioselective synthesis of (+)-meloscine represents the first example of a natural product synthesis employing an enantioselective [2+2]-photocycloaddition as its key step, and illustrates nicely the synthetic potential of photochemical transformations for the construction of complex heterocyclic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.