Abstract

Antibiotic resistance has become a significant public health concern. Antibiotics that belong to new structural classes and manifest their biological activity via novel mechanisms are urgently needed. Lysobactin, a depsipeptide antibiotic has displayed very strong antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) as well as vancomycin-resistant enterococci (VRE) with minimum inhibitory concentrations (MICs) ranging from 0.39 to 0.78 microg/mL. The MIC values against VRE were more than 50-fold lower than those reported for vancomycin itself. Lysobactin was found to inhibit nascent peptidoglycan formation; however, this activity was not antagonized in the presence of N-acyl-L-Lys-D-Ala-D-Ala, the binding domain on the cell wall precursors that is utilized by vancomycin. Thus, lysobactin represents a promising agent for the treatment bacterial infections due to resistant pathogens. We describe a convergent synthesis of lysobactin that relies upon a highly efficient macrocyclization reaction to assemble the 28-membered cyclic depsipeptide. This synthesis provides the foundation for further study of the mode of action utilized by lysobactin and its analogues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.