Abstract

The total synthesis of (+)-discodermolide is described. The approach involves assemblage of three key stereotriad subunits through addition of nonracemic allenyltin, -indium, and -zinc reagents to (S)-3-silyloxy-2-methylpropanal derivatives, followed by reduction of the resulting anti,syn- or syn,syn-homopropargylic alcohol adducts to the (E)-homoallylic alcohols and subsequent Sharpless epoxidation. Addition of methyl cuprate reagents or Red-Al to the resultant epoxy alcohols yielded the key precursors, alkyne 4, aldehyde 9, and alcohol 24. Addition of alkyne 4 (as the lithio species 10) to aldehyde 9 afforded the propargylic alcohol 11 as the major stereoisomer. Lindlar hydrogenation and installation of appropriate protecting groups led to aldehyde 17. This was converted to the (Z)-vinylic iodide 18 upon treatment with α-iodoethylidene triphenylphosphorane. Suzuki coupling of this vinylic iodide with a boranate derived from iodide 25 led to the coupled product 27 with the complete carbon backbone of (+)-discodermolide and the correct stereochemistry. The synthesis was completed by cleavage of the cyclic PMP acetal at C1 with i-Bu2AlH and three-step oxidation−esterification to the ester 31. Cleavage of the C19 Et3Si ether and C19 carbamate formation followed by cleavage of the remaining alcohol protecting groups, first with DDQ and then aqueous HCl, afforded (+)-discodermolide (36).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.