Abstract

A highly stereoselective total synthesis of (-)-bafilomycin A(1), the naturally occurring enantiomer of this potent vacuolar ATPase inhibitor, is described. The synthesis features the highly stereoselective aldol reaction of methyl ketone 8b and aldehyde 60c and a Suzuki cross-coupling reaction of the highly functionalized advanced intermediates 12 and 39. Vinyl iodide 12 was synthesized by a 14-step sequence starting from the readily available beta-alkoxy aldehyde 14, while the vinylboronic acid component 39 was synthesized by a nine-step sequence from beta-hydroxy-alpha-methyl butyrate 44 via a sequence involving the alpha-methoxypropargylation of chiral aldehyde 49 with the alpha-methoxypropargylstannane reagent 54. Syntheses of fragments 12 and 39 also feature diastereoselective double asymmetric crotylboration reactions to set several of the critical stereocenters. The Suzuki cross-coupling of 12 and 39 provided seco ester 40, which following conversion to the seco acid underwent smooth macrolactonization to give 41. The success of the macrocyclization required that C(7)-OH be unprotected. The Mukaiyama aldol reaction between aldehyde 60c and the TMS enol ether generated from 8b provided aldol 65 with high diastereoselectivity. Finally, all silicon protecting groups were removed by treatment of the penultimate intermediate 65 with TAS-F (tris(dimethylamino)sulfonium difluorotrimethylsilicate), thereby completing the total synthesis of (-)-bafilomycin A(1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.