Abstract

A nearly-30-year-old unanswered synthetic puzzle, astellatol, has been solved in an enantiospecific manner. The highly congested pentacyclic skeleton of this rare sesterterpenoid, which possesses a unique bicyclo[4.1.1]octane motif, ten stereocenters, a cyclobutane that contains two quaternary centers, an exo-methylene group, and a sterically encumbered isopropyl trans-hydrindane motif, makes astellatol arguably one of the most challenging targets for sesterterpenoid synthesis. An intramolecular Pauson-Khand reaction was exploited to construct the right-hand side scaffold of this sesterterpenoid. An unprecedented reductive radical 1,6-addition, mediated by SmI2 , forged the cyclobutane motif. Last, a strategic oxidation/reduction step provided not only the decisive solution for the remarkably challenging late-stage transformations, but also a highly valuable unravelling of the notorious issue of trans-hydrindane synthesis. Importantly, the synthesis of astellatol showcases a rapid, scalable strategy to access diverse complex isopropyl trans-hydrindane sesterterpenoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.