Abstract

The escalating threat posed by antibiotic resistance is a global concern and underscores the need for new antibiotics. In this context, the recent discovery of evybactin, a nonribosomal depsipeptide antibiotic that selectively and potently inhibits the growth of M. tuberculosis, is particularly noteworthy. Here, we present the first total synthesis of this natural product, along with a revision of its assigned structure. Our studies revealed a disparity between the structure originally proposed for evybactin and its actual configuration. Specifically, the 3-methylhistidine residue present in the evybactin core macrocycle was found to be of the d-configuration rather than the previously assigned l-His(Me). Having addressed this, we further optimized our solid-phase synthetic route to provide access to evybactin on a multi-hundred-milligram scale. Access to such quantities will allow for more comprehensive studies with this promising antibiotic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.