Abstract
The molecular structure of azaspiracid-1, a neurotoxin isolated from mussels, has been elucidated by total synthesis which also enriched its supplies. The degradatively derived fragments of this marine biotoxin, compounds 5 (EFGHI), 6 (FGHI), and 40 (ABCD), were matched with synthetic materials, thus confirming their structural identities. Based on this detective work, a new structure of azaspiracid-1 (i.e., 1) was proposed and constructed by total synthesis. The final strategy for the total synthesis of azaspiracid-1 featured a dithiane anion (C(21)-C(27) fragment) reacting with a pentafluorophenol ester (C(1)-C(20) fragment) followed by a Stille-type union of an advanced allylic acetate substrate (C(1)-C(27) fragment) with a vinyl stannane as the main coupling processes to assemble the carbon skeleton of the molecule. In addition to the total synthesis of azaspiracid-1 (1), the syntheses of its C(1)-C(20) epimer (2) and of several truncated analogues for biological investigations are described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.