Abstract

Here, we report the first total synthesis of hybrubin A, a bipyrrole tetramic acid alkaloid representing a new carbon framework derived from convergent (truncated red cluster and exogenous hbn cluster) biosynthetic pathways. A highly convergent synthesis was developed, employing 4-methoxy-1,5-dihydro-2H-pyrrol-2-one (13) as a single starting material to provide hybrubin A in three steps from 13 and 20.8% overall yield. As no biological activity was prescribed to hybrubin A except for a lack of cytotoxicity, we further profiled this unique alkaloid across panels of discrete molecular targets. Interestingly, hybrubin A was found to be a ligand for a variety of GPCRs with a propensity for potent binding across therapeutically relevant adenosine receptors (A1, A2a, and A3) as well as a potent activity at a kinase, FLT3. This pattern of biological activity is distinct from other related prodigiosin natural and unnatural products and is even more intriguing in the absence of cytotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call