Abstract

A concise total synthesis of an exceedingly potent anti-inflammatory agent violacin A as well as the preparation of thirty analogues of this lead from commercially available orcinol are described. Highlights of our synthetic efforts involve Friedel-Crafts acylation, the regioselective etherification and esterification of phenolic hydroxyl groups, and Baker-Venkatamaran rearrangement to form basic skeleton of violacin A. The deprotection reaction with Pd-catalytic was involved to avoid the elimination of the hemiacetal hydroxyl at C2. In addition, all synthetic compounds were screened for anti-inflammatory activity against nitric oxide (NO) production using lipopolysaccharide (LPS)-induced Raw264.7 cells. A range of violacin A derivatives 11b, 11d, 11f, 12e, 12g, 13g, 17d-g exhibited stronger anti-inflammatory effect than that of violacin A. Notably, halogeno-benzyloxy substituent at C-7 were favourable for anti-inflammatory activities of violacin A derivatives. Additionally, Western blot results indicated halogeno-benzyloxy derivatives inhibited pro-inflammatory cytokines releases correlated with the suppression of NF-κB signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call