Abstract

In this study, a total sliding-mode control (TSMC) scheme is designed for the voltage tracking control of a conventional dc-dc boost converter. This control strategy is derived in the sense of Lyapunov stability theorem such that the stable tracking performance can be ensured under the occurrence of system uncertainties. The salient feature of this control scheme is that the controlled system has a total sliding motion without a reaching phase as in conventional sliding-mode control (CSMC). Moreover, the effectiveness of the proposed TSMC scheme is verified by numerical simulations, and the advantages of good transient response and robustness to uncertainties are indicated in comparison with a conventional proportional-integral control (PIC) system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.