Abstract

Semiconductor process characterization techniques based on total-reflection X-ray fluorescence (TXRF) analysis are reviewed and discussed. One of the most critical factors in obtaining reliable determinations by TXRF is the reliability of the standard samples that are used. Conventional physisorption standard samples such as spin coat wafers have two potential drawbacks: reproducibility of depth profile and stability. A method of chemisorption called ‘immersion in alkaline hydrogen peroxide solution (IAP)’ was proposed that provides answers to these two problems. IAP standard samples were used to experimentally examine three methods of TXRF application: Straight-TXRF, VPD-TXRF, and Sweeping-TXRF. In the application of Straight-TXRF, the linearity of Cu at a level of 10 9 atoms cm −2 is examined. In the application of VPD-TXRF, test results of VPD-TXRF for both transition metals and light elements are shown. Finally, a new measurement protocol called Sweeping-TXRF is proposed to conduct whole-surface analysis without chemical preconcentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call