Abstract

This paper studies total positivity and relative convexity properties in option pricing models. We introduce these properties in the Black-Scholes setting by showing the following: out-of-the-money calls are totally positive in strike and volatility; out-of-the-money puts have a reverse sign rule property; calls and puts are convex with respect to at-the-money prices; and relative convexity of option prices implies a convexity-in-time property of the underlying. We then extend these properties to other models, including scalar diffusions, mixture models, and certain Lévy processes. We show that relative convexity typically holds in time-homogeneous local volatility models through the Dupire equation. We develop implications of these ideas for empirical option prices, including constraints on the at-the-money skew. We illustrate connections with models studied by Peter Carr, including the variance-gamma, CGMY, Dagum, and logistic density models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.