Abstract

An alternative method to determine the interstitial void volume and the external porosity inside a packed or a monolithic column was developed. The method is based on the total blocking of the mesopores of a porous support by filling them with a hydrophobic solvent. The strong interaction of the latter with the hydrophobic coating inside the pores keeps the solvent in position during the subsequent measurements. With the pores of the stationary phase material completely inaccessible for any type of polar molecules, the method allows to perform interstitial void measurements using small molecular weight (MW) molecules instead of the large MW molecules that need to be used in inverse size exclusion chromatography (ISEC). These small MW molecules are able to penetrate every corner of the interstitial volume and therefore lead to a very accurate determination of the external porosity. Since only one type of molecules needs to be injected, the often troublesome regression analysis needed in ISEC is omitted as well. In the present contribution, the method has been applied to a packed bed and a monolithic column to investigate the optimal conditions of flow velocity, liquid compositions, and unretained marker selection. The robustness and the repeatability of the method are discussed as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.