Abstract

The antioxidant activity of four species of the Malvaceae family (Sidastrum micranthum (A. St.-Hil.) Fryxell, Wissadula periplocifolia (L.) C. Presl, Sida rhombifolia (L.) E. H. L and Herissantia crispa L. (Brizicky)) were studied using the total phenolic content, DPPH radical scavenging activity and Trolox equivalent antioxidant capacity (TEAC) assays. The antioxidant activity of the crude extract, phases and two isolated flavonoids, kaempferol 3,7-di-O-α-L-rhamnopyranoside (lespedin) and kaempferol 3-O-β-D-(6''-E-p-coumaroil) glucopyranoside (tiliroside) was determined. The results showed that there is a strong correlation between total polyphenol contents and antioxidant activity of the crude extract of Sidastrum micranthum and Wissadula periplocifolia; however, this was not observed between Sida rhombifolia and Herissantia crispa. The ethyl acetate (EaF) phase showed the best antioxidant effect in the total phenolics, DPPH and TEAC assays, followed by the chloroform (CfF) phase, in most species tested. Lespedin, isolated from the EaF phase of W. periplocifolia and H. crispa may not be responsible for the antioxidant activity due to its low antioxidant activity (IC50: DPPH: 1,019.92 ± 68.99 mg/mL; TEAC: 52.70 ± 0.47 mg/mL); whereas tiliroside, isolated from W. periplocifolia, H. crispa and S. micrantum presented a low IC50 value (1.63 ± 0.86 mg/mL) compared to ascorbic acid in the TEAC assay.

Highlights

  • Reactive oxygen species (ROS), such as superoxide radicals, hydroxyl (OH) radicals and peroxyl radicals, are natural byproducts of the normal metabolism of oxygen in living organisms with important roles in cell signalling [1,2]

  • Due to the ethnobotanical importance of the family and the absence of studies that prove their antioxidant activity, the aim of this study was to evaluate the antioxidant activity, using DPPH radical scavenging activity and Trolox equivalent antioxidant capacity, and the total phenolic content of the crude extract (CE) and various phases depending on the species: ethyl acetate (EaF), aqueous (WtF), chloroform (CfF) hexane (HF), n-butanol (n-BF) or dichloromethane (DF) phases of plants of the Malvaceae family: Sidastrum micranthum, Wissadula periplocifolia, Sida rhombifolia and Herissantia crispa

  • The Trolox equivalent antioxidant capacity (TEAC) assay, the CfF phase showed better antioxidant activity (IC50 = 23.98 ± 0.03) compared to the other phases. This discrepancy in total antioxidant activity values depending on the method used indicates that both assays determine different aspects of the antioxidant capacity

Read more

Summary

Introduction

Reactive oxygen species (ROS), such as superoxide radicals, hydroxyl (OH) radicals and peroxyl radicals, are natural byproducts of the normal metabolism of oxygen in living organisms with important roles in cell signalling [1,2]. Excessive amounts of ROS may be a primary cause of biomolecular oxidation and may result in significant damage to cell structure, contributing to various diseases, such as cancer, stroke, diabetes and degenerative processes associated with ageing [3,4]. Antioxidants have been shown to prevent the destruction of -cells [6,7], and to prevent or inhibit oxidation processes in human body and food products [8]. Plant polyphenols with antioxidant capacity could scavenge reactive chemical species as well as minimise oxidative damage resulting from excessive light exposure. Some plant polyphenols are important components of both human and animal diets and they are safe to be consumed [9]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call