Abstract

The catalytic activity of Cu-Mn mixed oxides with varying Cu/Mn ratios prepared by co-precipitation method was examined for the total oxidation of propane. The nature and phase of the metal oxide species formed were characterized by various methods such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (TPR) as well as BET surface area measurement. The co-precipitation method provides highly interdispersed copper and manganese metallic elements forming Cu-Mn mixed oxide of spinel structure (Cu1.5 Mn1.5O4). Besides the spinel-type Cu-Mn mixed oxide, CuO or Mn2O3 phases could be formed depending on the Cu/Mn molar ratio of their precursors. The catalytic activity of Cu-Mn mixed oxide catalyst for propane oxidation was much higher than those of single metal oxides of CuO and Mn2O3. The higher catalytic activity likely originates from a synergic effect of spinel-type Cu-Mn mixed oxide and CuO. The easier reducibility and BET surface area seems to be partially responsible for the high activity of Cu-Mn mixed oxide for total oxidation of propane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call