Abstract

Ruthenium (Ru) nanoparticles (∼3 nm) with mass loading ranging from 1.5 to 3.2 wt % are supported on a reducible substrate, cerium dioxide (CeO2, the resultant sample is called Ru/CeO2), for application in the catalytic combustion of propane. Because of the unique electronic configuration of CeO2, a strong metal-support interaction is generated between the Ru nanoparticles and CeO2 to stabilize Ru nanoparticles for oxidation reactions well. In addition, the CeO2 host with high oxygen storage capacity can provide an abundance of active oxygen for redox reactions and thus greatly increases the rates of oxidation reactions or even modifies the redox steps. As a result of such advantages, a remarkably high performance in the total oxidation of propane at low temperature is achieved on Ru/CeO2. This work exemplifies a promising strategy for developing robust supported catalysts for short-chain volatile organic compound removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call