Abstract

ZrO2 nH2O (hydrogel) impregnated with transition metals (Cu, Co, and Ni) was studied in this work as a precursor for the synthesis of CuO/ZrO2 (CuZ), CoOx/ZrO2 (CoZ), and NiO/ZrO2 (NiZ) catalysts, employed in the naphthalene oxidation reaction. Fresh and catalytically used materials were characterized by different physicochemical techniques, to compare the bulk and surface behavior, with particular attention to the effect of the supported metal species’ properties on the catalytic activity. Techniques such as X-ray diffraction (XRD), temperature programmed reduction (TPR), differential scanning calorimetry (DSC), Brunauer–Emmett–Teller (BET) surface area analyzer, diffuse reflectance spectroscopy (DRS UV–vis), and Raman spectroscopy, allow for establishing structural and textural aspects of the support, as well as the surface coordination and the accessibility of supported species. Results were in agreement with the CuZ > CoZ > NiZ sequence for the activity in naphthalene oxidation reaction. Electronic properties, ionic sizes, oxide phase deposition on the support surface, reducibility, metal–support interaction, and local site symmetry of metals seem to be decisive factors for the catalytic interaction with the gaseous phase.

Highlights

  • Volatile organic compounds (VOCs), emitted to the atmosphere by industrial and anthropic processes, are chemically associated to products derived from petrochemical processes and fuel combustion

  • All catalysts based on transition metal oxide supported on zirconia are active for total oxidation of naphthalene, increasing significantly, the activity of pure zirconia

  • A set of factors determine the catalytic efficiency, such as surface area, crystallite size, the surface dispersion of metal oxide, similarity between Zr(IV) and metal ionic radii, number of vacancies generated by cationic substitution, mobility of oxygen vacancies from the bulk to sub-surface, local symmetry of metal, stabilization of zirconia tetragonal phase, and metal reducibility

Read more

Summary

Introduction

Volatile organic compounds (VOCs), emitted to the atmosphere by industrial and anthropic processes, are chemically associated to products derived from petrochemical processes and fuel combustion (e.g., automobile exhaust gas). They become hazardous for the environment, and for the human health. The high cost of these metals and the easy of deactivation by sintering or poisoning limit industrial application [9] Catalytic oxidation to carbon dioxide and water is one of the most promising methods for removing VOCs to carbon dioxide and water, since this process occurs at temperatures lower than those adopted by other non-catalytic processes, and can be used for effluent streams containing low VOC concentration [1,2,3,4,5,6,7,8].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.