Abstract

Commercial VOC oxidation catalysts can be used as comparative materials during development of new or improved catalysts. The objective of this study was to investigate physicochemical properties of EnviCat® commercial catalysts and their performance in total oxidation of three model compounds (dichloromethane, toluene and ethanol) at laboratory scale. The reactivity of model VOC was decreasing in the order ethanol>toluene>dichloromethane. The Cu–Mn/Al catalyst was found to be the most active and selective catalyst in ethanol oxidation. In oxidation of dichloromethane, the Pt–Pd/Al–Ce catalyst with 0.10wt% Pt+Pd was the most active, while the most selective one (giving the highest HCl yield) was the Pt–Pd/Al catalyst containing 0.24wt% Pt+Pd. In toluene oxidation, the Pt–Pd/Al catalyst with 0.24wt% Pt+Pd possessed the highest activity; the selectivity to CO2 was 100% for all investigated catalysts. Obtained results showed that the performance of commercial catalysts in laboratory scale tests can be different from that declared by catalyst supplier. A possible difference in catalytic performance at industrial and laboratory scale should be taken into account when industrial catalysts are used in laboratory scale tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.