Abstract

The identification and allocation of multiple hydrocarbon sources in marine sediments is best achieved using an holistic approach. Total organic carbon (TOC) is one important tool that can constrain the contributions of specific sources and rule out incorrect source allocations in cases where inputs are dominated by fossil organic carbon. In a study of the benthic sediments from Prince William Sound (PWS) and the Gulf of Alaska (GOA), we find excellent agreement between measured TOC and TOC calculated from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. Confirmation by two such independent source indicators (TOC and fingerprint matches) provides evidence that source allocations determined by the fingerprint matches are robust and that the major TOC sources have been correctly identified. Fingerprint matches quantify the hydrocarbon contributions of various sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. TOC contents are then calculated using source allocation results from fingerprint matches and the TOCs of contributing sources. Comparisons of the actual sediment TOC values and those calculated from source allocation support our earlier published findings (5) that the natural petrogenic hydrocarbon background in sediments in this area comes from eroding Tertiary shales and associated oil seeps along the northern GOA coast and exclude thermally mature area coals from being important contributors to the PWS background due to their high TOC content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.