Abstract
The total OH reactivity of the secondary products formed from the OH-initiated oxidation of toluene, p-xylene, and 1,3,5-trimethylbenzene was directly measured in the presence of NOx using a laboratory environmental chamber in order to investigate unidentified reactive species in urban air. The total OH reactivity was also calculated from the concentrations of the reactants and products, which were monitored by Fourier-transform infrared spectroscopy. The difference between the measured and calculated OH reactivity, the so-called missing OH reactivity, comprised 58–81% of the total OH reactivity of the secondary products. These results suggest that the secondary products formed from the oxidation of aromatic hydrocarbons may be important candidates in accounting for the missing OH reactivity in the analyses of urban environments. The Master Chemical Mechanism (MCM) calculations were performed to predict the temporal variation in the total OH reactivity for the oxidation of aromatic hydrocarbons. The MCM calculations successfully reproduced the observed total OH reactivity when the particle and semi-volatile product concentrations were negligibly low. The MCM calculations were used to identify the missing secondary products. The results suggest that important components of the missing OH reactivity are unsaturated multifunctional products such as unsaturated dicarbonyls, unsaturated epoxydicarbonyls, and furanones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.