Abstract
The cetacean brain has long been of scientific interest, not only because of its large size - the largest in the animal kingdom - but also because of its high gyrification. It shows several adaptations to the aquatic environment, especially in the cortical arrangements of functional areas. To study structural aspects of the mysticete brain we estimated neocortical features in the common minke whale using stereological methods. The neocortex was surprisingly thick, equal to that in humans. The total neocortical neuron number was 12.8 x 10(9), and the total neocortical glia number 98.2 x 10(9). Total cell numbers in the auditory and visual cortex were also estimated, and showed that the auditory cortex contained more cells than the visual cortex. In this small sample, no sexual dimorphism was seen within the neocortex of the common minke whale. Our aim was to estimate the total cell number, cortical volume and cell density in the entire mysticete neocortex and compare the total cell number in the auditory cortex with that of the visual cortex using stereological methods. Here, we used the common minke whale as a model of all mysticetes. We wanted to compare these neocortical features to those of other mammals to forward understanding of the evolution of the mammalian brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.