Abstract

We present a joint copula-based model for insurance claims and sizes. It uses bivariate copulae to accommodate for the dependence between these quantities. We derive the general distribution of the policy loss without the restrictive assumption of independence. We illustrate that this distribution tends to be skewed and multi-modal, and that an independence assumption can lead to substantial bias in the estimation of the policy loss. Further, we extend our framework to regression models by combining marginal generalized linear models with a copula. We show that this approach leads to a flexible class of models, and that the parameters can be estimated efficiently using maximum-likelihood. We propose a test procedure for the selection of the optimal copula family. The usefulness of our approach is illustrated in a simulation study and in an analysis of car insurance policies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.