Abstract

Resistance switching memory devices based on cation transport through an electrolyte and redox reactions at the electrodes have been implemented in a commercial memory technology known as conductive bridging random access memory (CBRAM). In this letter, the number of bit errors and variations in the supply current of CBRAM circuits exposed to ionizing radiation is investigated and compared with common memory technologies. The results indicate that even after exposure to high levels of ionizing radiation, CBRAM devices show no degradation in memory retention, which suggests that the technology has high reliability capability when compared with existing nonvolatile memory solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.