Abstract
The peaked evolution of leakage current with total ionizing dose observed in transistors in 130 nm generation technologies is studied with field oxide field effect transistors (FOXFETs) that use the shallow trench isolation as gate oxide. The overall radiation response of these structures is determined by the balance between positive charge trapped in the bulk of the oxide and negative charge in defect centers at its interface with the silicon substrate. That these are mostly interface traps and not border traps is demonstrated through dynamic transconductance and variable-frequency charge-pumping measurements. These interface traps, whose formation is only marginally sensitive to the bias polarity across the oxide, have been observed to anneal at temperatures as low as 80 °C. At moderate or low dose rate, the buildup of interface traps more than offsets the increase in field oxide leakage due to oxide-trap charge. Consequences of these observations for circuit reliability are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.