Abstract

A method for precision small-angle measurement is proposed. This method is based on the total-internal-reflection effect of a light beam at a pair of glass prisms. Angular displacement of the light beam is measured when the intensity change of the reflected beam is detected as a result of the relative phase shift between the s- and the p-polarized beams. An initial phase shift between the s- and the p-polarized components is introduced to increase measurement sensitivity. For increased measurement linearity and reduced effect of laser power fluctuation on the output, a differential method is used in which the light beam is split equally into two beams, each reflected at a prism and detected by a photodiode. The output is obtained as the difference of the two detected intensities divided by their sum. A prototype device was built, which demonstrated a nonlinearity error of 1.3% in a measurement range of ?0.6 degrees or 0.4% in ?0.3 degrees . The peak-to-peak noise level was found to be at approximately 0.5 arc sec. This noise level can be reduced further and resolution increased by a reduction of the measurement range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.