Abstract

AbstractMicrofluidic droplet generators have garnered great attention due to the uniformity, high‐throughput capability, and facile experimental setup. To maximize the potentials of droplet technology as a chemical/biological nanoliter‐scale reactor, the downstream processes such as separation of the aqueous and oil phase, real‐time monitoring of the products formed in droplets, and the final product recovery from the droplets is necessary. In this study, the droplet is utilized as a chemical reactor to synthesize a variety of Ag and Au bimetallic nanoalloys in a fully integrated microsystem including sample injection, a T‐junction droplet generator, droplet reaction, water–oil phase separation, real‐time UV–vis absorbance detection, and product recovery. The flow rate of the Ag nanoparticle (NP) solution and the HAuCl4 solution was tuned to generate different molar ratios of Ag and Au components. The in‐line UV–vis absorbance spectrometer displays a peak shift of the Ag/Au bimetallic alloys depending on the molar ratio of Ag/Au in the continuous process, enabling to judge the kind of the Ag/Au alloys in situ and collect a variety of Ag/Au nanoalloys. Thus, the desired nanomaterials can be obtained with minimal trial and error, saving time and cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.