Abstract
This report shows that soil heavy metals can be totally immobilized by grinding with nano-Fe/Ca/CaO. Remediation of soils contaminated by heavy metals is a critical issue in Japan. Indeed, contaminated soils are notoriously difficult to remediate using available technologies. Major setbacks in typical immobilization techniques for heavy metals are wet conditions, forming secondary effluents and further treatment for effluents. Solidification with nano-Fe/Ca/CaO dispersion mixture is a promising treatment for the total immobilization of soil heavy metals As, Cd, Cr, Pb, and separation in dry conditions. Here, we studied the heavy metal immobilization by simple grinding with the addition of three mixtures: nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/PO4. Samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) and scanning electron microscopy combined with electron dispersive spectroscopy (SEM–EDS). Results show that the addition of nano-Fe/Ca/CaO immobilized 95–99 % of heavy metals, versus 65–80 % by simple grinding. After treatment, 36–45 wt% of magnetic and 64–55 wt% of nonmagnetic fractions of soil were separated. Their condensed heavy metal concentration was 85–95 % and 10–20 %, respectively. Nano-Fe/Ca/CaO treatment reduced the concentration of leachates heavy metals to values lower than the Japan soil elution standard regulatory threshold of 0.01 mg/l for As, Cd, and Pb; and 0.05 mg/l for Cr. This technology can therefore immobilize totally soil heavy metals and reduce heavy metal by separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.