Abstract

Cryolipolysis uses tissue cooling to solidify lipids, preferentially damaging lipid-rich cells. Topical cooling is popular for the reduction of local subcutaneous fat. Injection of biocompatible ice-slurry is a recently introduced alternative. We developed and verified a quantitative model that simulates the heat exchange and phase changes involved, offering insights into ice-slurry injection for treating subcutaneous fat. Finite element method was used to model the spatial and temporal progression of heat transfer between adipose tissue and injected ice-slurry, estimating dose-response relationships between properties of the slurry and size of tissue affected by cryolipolysis. Phase changes of both slurry and adipose tissue lipids were considered. An in vivo swine model was used to validate the numerical solutions. Oils with different lipid compositions were exposed to ice-slurry in vitro to evaluate the effects of lipid freezing temperature. Microscopy and nuclear magnetic resonance (NMR) were performed to detect lipid phase changes. A ball of granular ice was deposited at the injection site in subcutaneous fat. Total injected ice content determines both the effective cooling region of tissue, and the duration of tissue cooling. Water's high latent heat of fusion enables tissue cooling long after slurry injection. Slurry temperature affects the rate of tissue cooling. In swine, when 30 ml slurry injection at -3.5°C was compared to 15 ml slurry injection at -4.8°C (both with the same total ice content), the latter led to almost twice faster tissue cooling. NMR showed a large decrease in diffusion upon lipid crystallization; saturated lipids with higher freezing temperatures were more susceptible to solidification after ice-slurry injection. Total injected ice content determines both the volume of tissue treated by cryolipolysis and the cooling duration after slurry injection, while slurry temperature affects the cooling rate. Lipid saturation, which varies with diet and anatomic location, also has an important influence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.